⑴ 矩阵是做什么用的
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
矩阵的应用:
1、图像处理。在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式
2、线性变换及对称。线性变换及其所对应的对称,在现代物理学中有着重要的角色。
3、量子态的线性组合。1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态。
另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。其中的线性组合可以表达为一个矩阵,称为S矩阵,其中记录了所有可能的粒子间相互作用[30] 。
4、简正模式。矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
5、几何光学。在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面(英语:principal plane)的垂直距离)。这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。由一系列透镜或反射元件组成的光学系统,可以很简单地以对应的矩阵组合来描述其光线传播路径。
6、电子学。在电子学里,传统的网目分析(英语:mesh analysis)或节点分析会获得一个线性方程组,这可以以矩阵来表示与计算。
⑵ 矩阵在现实生活中的应用
随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:
矩阵在经济生活中的应用
可“活用”行列式求花费总和最少等类似的问题;
可“借用”特征值和特征向量预测若干年后的污染水平等问题。
在人口流动问题方面的应用
这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。
矩阵在密码学中的应用
可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。
矩阵在文献管理中的应用
比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。
⑶ 矩阵有何用处
矩阵是监控系统中的模拟设备,主要负责对前端视频源与控制线的切换控制,举个例子,如果你有70个摄像机,可是只有7台监视器,那么矩阵可以让你的任何一台监视器显示出任意组合的10个画面。简短地说,矩阵主机主要是配合电视墙使用,完成画面切换的功能