1. 如何实现工业互联网产业
一、锚定细分市场
我认为,对于工业互联网企业来说,并不是什么行业都应该涉足的,目前有些工业互联网企业,尤其是双跨企业,动辄就说自己做了几十个行业,赋能了很多用户,其实,我觉得对于一个初创行业和初创企业来说,不宜做的行业过多,而应该是在不涉及过多行业的情况下,每个行业做深做透,也就是说,评价一个好的工业互联网企业的一个指标是,哪怕只做了几个行业,但是每个行业都做了几十个客户,这样才是真正的有效行业应用。
之所以开展直销模式,是因为对于任何一个新兴行业来说,没有什么比直接面对客户更直接有效的方式了,客户前期了解你的方式只有和你面对面的方式,其他的方式都是不合适的,很难想象能有人比你更能够说清楚你的新体系、新架构和新技术。
对于工业互联网行业也一样,企业只有不断地去通过直销面对客户,才能前期让客户尽早的了解你的产品体系和服务内容,通过不断地市场积累,慢慢的磨合自己的产品,打造自己的品牌,再融合各类其他的产品,才能顺利站稳脚跟,走向主流。
2. 各省市、各个地区应该如何发展工业互联网,有哪些主要任务
自2017年国务院印发《关于深化“互联网+先进制造业” 发展工业互联网的指导意见》之后,各地纷纷加快工业互联网的建设与发展步伐。发展工业互联网,网络体系是基础,平台体系是关键,安全体系是保障。各省市、各地区应紧紧系统构建网络、平台、安全三大体系,打造人、机、物全面互联的新型网络基础设施,全力推进七大任务:
1.夯实网络基础
夯实工业互联网的网络基础,应围绕网络改造升级、提速降费、标识解析,推进三方面的工作:
第一,以IPv6、工业无源光网络(PON)、工业无线、时间敏感网络(TSN)等技术,改造工业企业内网;
第二,以IPv6、软件定义网络(SDN)以及新型蜂窝移动通信技术(即5G技术),实现工业企业外网的升级改造;
第三,推进标识解析体系建设,围绕工业互联网标识解析国家顶级节点,推动行业性二级接机点的建设与连接。
2.打造平台体系
第一,培育工业互联网平台,以企业为主导,构建跨行业、跨领域平台,实现多平台互联互通。
第二,开展工业互联网平台试验验证。支持产业联盟、企业与科研机构合作共建测试验证平台,开展技术验证与测试评估。
第三,推动、吸引企业上云。鼓励工业互联网平台在产业集聚区落地,通过财税支持、政府购买服务等方式,鼓励中小企业的业务系统向云端迁移。
第四,培育工业APP,支持软件企业、工业企业、科研院所等开展合作,培育一批面向特定行业、特定场景的工业APP。
3.加强产业支撑
要加强产业支撑,必须加大关键共性技术攻关力度,提升产品与解决方案供给能力:
第一,关键共性技术支撑。鼓励企业和科研院所合作,围绕工业互联网核心关键技术、网络技术、融合应用技术开展联合攻关,促进边缘计算、人工智能、增强现实、虚拟现实、区块链等技术在工业互联网应用。
第二,系统解决方案支撑。围绕智能传感器、工业软件、工业网络设备、工业安全设备、标识解析等领域,推广一批经济实用的微服务化系统解决方案。
4.促进融合应用
融合创新工作应围绕大型企业和中小型企业两大主体开展:
针对大型企业,加快工业互联网在工业现场的应用;开展用于个性需求与产品设计,生产制造精准对接的规模化定制;
针对中小企业,实现业务系统向云端迁移;开展供需对接、集成供应链、产业电商、众包众筹等创新型应用。
5.完善生态体系
第一,构建创新体系:有效整合高校、科研院所、企业等创新资源,围绕重大共性需求与行业需要,面向关键技术与平台需求,开展产学研协同创新。
第二,构建应用生态,鼓励工业互联网服务商面向制造业企业提供咨询诊断、展示展览、行业资讯、人才培训、园企对接等增值服务。
第三,构建企业协同发展体系,以需求为导向,基于工业互联网平台,构建中介型共享制造、众创型共享制造、服务型需求共享制造、协同型共享制造等新型生产组织方式。
第四,构建区域协同发展体系,建设工业互联网创新中心、工业互联网产业示范基地。
6.强化安全保障
安全保障是发展工业互联网的底线,必须切实提升安全防护能力,建立数据安全保护体系,推动安全技术手段建设。此外,各地区还应大力发展信息安全产业,推动标识解析系统安全、工业互联网平台安全、工业控制系统安全、工业大数据安全等相关技术和产业发展,开展安全咨询、评估和认证等服务,提升整体安全保障服务能力。
7.坚持开放合作
第一,加强地区乃至国际的企业协作,形成跨领域、全产业链紧密协作的关系。
第二,建立政府、产业联盟、企业等多层次沟通对话机制。
第三,积极参与国际组织的协同与合作,参与工业互联网标准规范与国际规则的研讨与制定。
3. 制造企业如何借力工业大数据
制造企业如何借力工业大数据
工业大数据和原来的信息化有何区别?
简单来说,1990年代以前,大部分企业都在做企业内部信息化,这被称为第一次浪潮。1990年代以后,互联网开始席卷全球,企业相继进行互联网化。而随着信息化与工业化的深度融合,工业大数据悄然兴起,这也将成为下一个提升制造业生产力的技术前沿。在清华大学工业大数据研究中心主任王建民看来,工业大数据即第三次工业变革,它以智能互联的产品为核心载体,而不单纯只是通过互联网增值。
王建民认为,在制造业的利润越来越低的情况下,工业大数据可以帮助中国企业提高产品在使用维护阶段的利润。最重要的是,利用数据进行跨界运营,能够为企业带来新的生存空间。
利用大数据抢占价值高地
为什么工业大数据对当下的中国企业来说,有着如此深远的意义?
事实上,在王建民看来,一个复杂装备的生命周期分三个阶段,即:开发制造阶段(Beginning of Life,简称BOL)、使用维护阶段(Middle of Life,简称MOL)、回收利用阶段(即End of Life,简称EOL)。
原来,制造企业将重心放在开发制造阶段,企业的核心目标就是将装备设计制造出来。而产品售卖给消费者后,就和企业没有关系或者变得无关紧要了。所以生命周期的第二、三阶段,常常被企业忽略。但装备的价值真正体现在用户的使用体验上,而不在于制造,尽管制造由质量决定。但消费者在使用阶段的流畅程度,才能反映出产品的最终功效。
加工制造环节的确能够产生很多利润,但在当前环境下,生产制造的利润越来越薄,使企业越来越难以为继。而中国是一个制造大国,更是一个使用大国,制造业的兴衰事关重大。王建民认为,只有利用大数据抢占价值高地,实现产品智能化,才能实现从“中国制造”到“中国创造”的转变,从“生产型制造”到“服务型制造”转变,这也是“中国制造2025”战略的应有之义。
跨界运营是工业互联网转型的核心
和之前很多技术一样,工业大数据并非横空出世,而是一脉相承。但又有新的变化,这种新的变化,在王建民看来,其核心在于连接,将原来孤立的机器连接起来,将人和机器连接起来,将不同的企业、行业连接起来。
事实上,这种连接已经产生了巨大的价值,有很多企业已经开始实践了。
例如:将人和产品联系起来,可以实现产品创新。日本科研人员设计出一种新型汽车座椅,根据驾驶者的体重、压力值等数据识别主人,以判断驾驶者是否为主人,从而决定是否启动。
又例如:将两个不同领域连接起来,可以实现销售模式的创新。欧洲人可以做到今天卖明天的风电,怎么卖?他们根据一系列数据,对明天的风力精准地进行测算,从而实现当天交易。这是风电装备在整个大气环境下进行的跨界运营的绝佳案例。
还有一个例子,《哈佛商业评论》曾经发表过一篇文章叫《智慧的互联产品》。美国人认为未来的工业产品应该分为五个阶段,到第四个阶段的时候,装备、产品会进入到一个产品的系统阶段,机器和机器之间可以对话和合作。比如在农业领域,播种器械、收获器械会联合起来到一个农场去作业。而终极阶段是:农业机器的集群和天气的数据,会和种子的数据、灌溉系统的数据联合起来,通过全方位的连接来解决农业生产中的绿色节能问题。
王建民说,通过跨界运营来创新是工业互联网转型的核心。在使用阶段做一个简单的维修、更换配件,不管是预防性维修还是主动维修,都还处于工业互联网的初级阶段。只有通过数据进行跨界运营,才抓住了整个装备制造业在服务阶段转型升级的核心。
工业大数据应避免的三个误区
听上去很美好的工业大数据,如何实践呢?王建民梳理了三大误区,以供企业参考:
一、维修=运行
在工业领域,维修和运行基本不会分开。但是在工业大数据里,二者是分开的。维修指的是,当产品性能下降的时候,通过更换零件或者其他手段,恢复其产品性能。而运行是指如何使用机器,使它产生价值。
二、产业大数据等同于消费大数据
工业大数据最核心的问题在于分析结果的可靠性。在消费大数据上,如果产品的广告推荐能达到20‰的可靠性,就是搜索引擎的最好水平。但这一数据在工业领域,显然远远不够。因为在工业领域,往往是失之毫厘,差之千里。工业的应用场景对数据准确率的要求达到99.9%,甚至更高,否则就会造成严重的经济损失乃至安全事故的发生。所以,王建民建议,从人员结构上来讲,工业大数据需要数据和产业的人才一起来做。
三、采集的数据越多越好
对于企业而言,机器采集的数据有时候是一个灾难,不是企业采集的所有数据都是有用的。不产生价值的数据就是垃圾信息,对于企业而言就是负担。企业在收集数据之前,首要任务是给数据画像,弄明白自己到底需要什么样的数据。
王建民认为,无论如何,大数据仍然要围绕装备增值服务的业务逻辑,在达到这个目的的过程中,让数据发挥作用,而非简单地只看到数据,而忽略了根本的逻辑。