1. 数据分析需要掌握些什么知识
一、理解数据库
进入了这个领域,你会发现几乎一切都是用数据库来存储数据,如MySQL,PostgreSQL,CouchDB,MongoDB,Cassandra等。理解数据库并且能熟练使用它,将是一个基础能力。
二、掌握数据整理、可视化和报表制作
数据整理,是将原始数据转换成方便实用的格式,实用工具有R语言等。数据可视化,是创建和研究数据的视觉表现。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。可以借助新型软件帮助自己迅速学会分析。如datahoop大数据专业分析平台,既可以满足企业需求,也可以适应个人需要。
三、懂设计
说到能制作报表成果,就不得不说说图表的设计。在运用图表表达数据分析师的观点时,懂不懂设计直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则才能让结果一目了然。否则图表杂乱无章,数据分析内容不能良好地呈现出来,分析结果就不能有效地传达。
六、随时贴近数据文化
拥有了数据分析的基本能力,还怕不够专业?不如让自己的生活中充满数据分析的气氛吧!试着多去数据分析的论坛看看,多浏览大数据知识的网站,让自己无时无刻不在进步,还怕不能学会数据分析吗?
拥有这些技能,再去做数据分析,数据将在你手里变得更亲切,做数据分析也会更简单更便捷,速成数据分析师不再遥远。
2. 工业数据采集的五种方法
工业数据采集的几种方式
1、传感器
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。在生产车间中一般存在许多的传感节点,24小时监控着整个生产过程,当发现异常时可迅速反馈至上位机,可以算得上是数据采集的感官接受系统,属于数据采集的底层环节。
传感器在采集数据的过程中主要特性是其输入与输出的关系。其静态特性反映了传感器在被测量各个值处于稳定状态时的输入和输出关系,这意味着当输入为常量,或变化极慢时,这一关系就称为静态特性。我们总是希望传感器的输入与输出成唯一的对照关系,最好是线性关系。一般情况下,输入与输出不会符合所要求的线性关系,同时由于存在这迟滞、蠕变等因素的影响,使输入输出关系的唯一性也不能实现。因此我们不能忽视工厂中的外界影响。其影响程度取决于传感器本身,可通过传感器本身的改善加以抑制,有时也可以加对外界条件加以限制。
2、条码技术
条码技术是实现POS系统、EDI、电子商务、供应链管理的技术基础,是物流管理现代化的重要技术手段。条码技术包括条码的编码技术、条码标识符号的设计、快速识别技术和计算机管理技术,它是实现计算机管理和电子数据交换不可少的前端采集技术。
二维条码是用某种特定的几何图案按一定规律在平面分布的黑白相间的图形记录数据符号信息的,在代码编制上巧妙的运用计算机内部逻辑基础的“0”“1”概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图像输入设备或光电扫描设备自动识读以实现信息自动处理。二维条码具有条码技术的一些共性:每个码制有其特定的字符集,每个字符占有一定的宽度,具有一定的校验功能等。同时还对不同行的信息具有自动识别功能与处理图形旋转变化等特定。
3、RFID技术
RFID(Radio Frequency Identification,射频识别)技术是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关的数据信息。利用射频方式进行非接触双向通信,达到识别目的并交换数据。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。在工作时,RFID读写器通过天线发送出一定频率的脉冲信号,当RFID标签进入磁场时,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
4、其他采集工具
受限与生产环节的复杂性与环境的苛刻,在除了RFID、条码和传感器的采集模式之外,还包含着利用人机交互的形式直接读取数据、利用现场设备如PLC和仪器仪表直接采集数据的模式。
3. 做网页采集需要学习哪些知识
一、采集器的制作的基本知识点。
1、懂一些简单的正则表达式的知识,知道些基本知识对大家在采集软件设置规则的时候是有帮助,正则表达式的一些基础知识是很容易掌握的,而绝大多数采集用的是最基本的正则表达式的内容。
如:起码要知道"." “ ” “s”"d" "*" "+" "?" "{3,5}" "[3-6]"。 了解这些简单正则式的基本含义,这里不作详细详解,大家可以从网上查到资料。我个人觉得正则还是比较容易学习,但是不经常使用的话,忘记的比较快。经常会出现边在网上查正则,边书写采集规则的情况。
2、会使用一些程序命令将网页的内容正确抓取下来。
二、对小说站进行采集的思路。
就看一下如何采集世纪,只要知道一个书本的ID号就可以开始了。通过前面的采集代码,一层一层的从网页上抓取数据,然后根据你设置的正则表达式标签,把所需要的内容取出来,判断是文字内容,还是图片内容,然后分别写入后端数据库。
如果是批量采集就按照设置的ID号不断循环,直到全部采集完。如果你设置从1-50000号开始采集,就基本可以目标书站的书全部采集完。
就算目标站中有空号,比如说:4678这个号没有书,这样大抓取这个号的时候会出现错误,通过正则采集判断是空号就放弃采集这个ID号就成啦。
手上的蓝心采集已经实现了三种批采模式。
防采集的基本思路
目前而言,防采集还没有一个还没有一个完全彻底的解决方案。
1、增加采集的规则难度,经常变换规则,这种方法对于防止采集是比较容易使用的方法,而且效果比较好,容易。
2、可以设置IIS和apache对图片的采集进行限制。
IIS通过重写一些附加模块可以实现,但是直接在IIS里通过设置来实现方法比较困难,需要附加模块来做这个事。
Apache可以实现图片简单防采和防盗链,设置比较简单,而且很实用。
4. 数据分析需要掌握哪些知识
数据分析需要学习以下几点:
一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。
想要成为数据分析师应该重点学习以下两点:
1.python、SQL、R语言
这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。
2.业务能力
数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。
当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。
关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。
5. 数据分析需要掌握些什么知识
数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。