导航:首页 > 汽车产业 > 工业物联网如何在化工企业发展

工业物联网如何在化工企业发展

发布时间:2022-10-09 20:35:48

① 物联网发展的应用领域目前有哪些

物联网主要技术。在物联网应用中有三项关键技术为物联网开辟出极为广阔的应用前景:

1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。

2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景,这也是为什么“物流”这个词总是与“物联网”同时出现。

3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。

物联网应用领域。物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。

② 企业如何推进智能制造和工业物联网(IIoT)战略

目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。

在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基网络“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:

工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。

另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。

③ 有关工业物联网的论文

下一代工业革命逐步逼近,我们将如何应用融会贯通新的功能?工业4.0将由自动化进步支持,工业物联网和基于电脑的控制器转型就是明显的例子。

工业4.0比前面3次工业革命来势更加迅猛,变革的速度更快,影响也更深远更彻底。

IP通讯的智能设备已经逐步主导工业版图。

工业物联网概念性元素之一就是使设备与设备之间的通讯(M2M:Machine to Machine)成为可能。对很多工业用户来讲,M2M并不新奇。在过去的几十年里,炼油厂就可以使成千上万个设备与控制系统沟通。M2M的新奇之处在于,设备变得更加智能,通过IP通讯,交换的信息也更加丰富。每个设备都有自己的IP地址,所以任何人在任何地方都可以通过互联网与这个设备联通。用户对这个功能的影响力的理解才逐步开始。

为什么数字化如此重要?

制造业的设备,无论是用于加工还是工厂自动化,在他们的测量能力、如何监控自身状态与如何沟通的本质上都变得更加智能。传统的哑巴式压力传感器或近距离传感器 (proximity sensor)把压力或距离读数转化为模拟信号,仅此而已。他们或许能代表M2M通讯,但是只是粗糙的原型。缺陷诸多的模拟通讯,正在被数字化迅速取代。其中的效果就好比智能手机取代原始的两个罐头盒加一根绳子构成的电话机。

精密的设备需要精密的控制器来发挥最大效用。一二十年前的一台PLC可以读取I/O数据并按步骤操作。然而,今天的制造业的要求远不止如此。今天的控制器必须能够处理运行数字工厂所需的控制功能。新一代控制器的兴起,结合了世界上最好的PLC的功能与电脑的多功能性。

设备和控制器的强大结合

新一代设备和控制器的结合帮助我们开设基于信息物理系统的数字化工厂。尽管电脑在上个世纪70年代就已经用于车间,但是电脑所能做的事情却发生了天翻地覆的变化。早期的PLC并不比之前的继电器好很多,但是PLC所能控制的事情随着技术发展和人们的创新思维的发展也日新月异。

传统的工业机器人只是被程序设定每天做单一重复的事情。但是随着网络物理概念的发展,机器人和它的控制器被编程,可以根据当前状况而独立判断下一步要做什么反应。举一个简单的例子,传送机可以输送各种瓶子到封口机,这些瓶子的基本形状相似,但是总共有5种颜色,每种颜色的瓶子需要对应该种颜色的封口。信息物理系统可以观察瓶子,并指令机器人抓取对应颜色的封口拧紧瓶子。机器人能做的还可以更多。

该信息物理系统还可以判断瓶子是否变形、是否贴了标签以及注入液体水平是否正确。使用一组智能传感器的信息,同一台机器人可以抓取不合格的瓶子移出产线。该系统可以经过编程“思考”所有可能发生的状况,并合理应对。

智能应用的智能控制器

有创造力的用户在创造新的方法帮助制造系统在更加复杂的应用里实施更加复杂的功能。由于各种操作和现场设备繁多,新的基于电脑的控制器是信息物理系统的关键之处。一种控制器可能会同时用于压力和流量传感器、机器视觉摄像机、条形码阅读器、马达驱动、阀门驱动装置、机器人以及其他各种设备。

以上提到的那些设备可能依赖从模拟电流环到工业以太网的多种通讯协议。这种系统的速度依赖更快的协议转换,因此每个设备可以兼容合作,支持生产。而且,所有那些设备可以发送诊断信息到中央控制处以供评估,比如发送信息到人类操作员或者维修部门,这些信息可能包括视觉摄像机上的LED灯要烧坏了,或者设备机柜冷却风扇被灰尘堵塞了等。这些预防性的维修能力预防生产时的故障或停机的可能性。

展望未来

所有这些元素——智能设备、基于电脑的控制器、信息物理系统和互联网通讯——正在相互结合支持工业4.0和目前的数字制造革命。

产品设计者将在电脑上开发新产品,包括所有的零部件。设计平台将需要理解每个零件的特性、结构材料和制造过程。

一件产品可能涉及注塑塑料零件、机械金属部件以及其他金属粉末或添加处理。系统会“考虑”所有这些元素如何相关,以及如何联系起来、每个元素是否结构完整,经过预设的处理是否可以被有效构建并组装。

设计平台下一步将决定生产和最终组装需要什么,目前的生产设施是够足够完成生产的任务,某个零件是否需要调整,是否需要创造新的生产线等问题。设计的结构将会是非常清晰详细的蓝图,解决产品如何生产包括降成本和提高生产率的问题。

一旦开始生产,所有开发服务程序的信息将完整呈现,在产品的整个生命周期里支持这个产品。产品和产品的制造流程都使用兼容软件虚拟设计而成,生产设施也可以使用生产设备、控制器和软件构建。

制造车间

如此设计的生产设施将达到前所未有的集成程度。每个设备(细化到每个传感器和驱动器)都将使用IP通讯,每个设备都有自己的IP地址。任何经过授权的人都可以在任何地方通过互联网访问设备,获得诊断和生产相关的信息。

通过输送到维修程序的诊断信息,生产将会达到高度稳定水平,意外状况将成为过去时。制造系统将无缝集成,并受周全的网络安全战略保护。多家分公司的企业在任何地方都可以共享信息。

实现以上描述的智能制造系统的技术很多已经被研发出来了。运行于工业电脑的产品设计软件主导创造设计,同样的平台可以启动和控制制造设施。最后我们需要的元素就是可以通过工业以太网通讯的工业传感器和驱动器。一大批工业传感器和驱动器已经设计出来,还有更多的正在设计当中。工业4.0所需的技术元素已经万事俱备,现在制造商只需要具备想象力和创造力来运用它。
此时工业中的通讯系统就显得尤为重要了,济南有人物联网(www.usr.cn)是专注于工业物联网的一家资深公司。里面的新型产品能有效的解决这方面的问题

④ 物联网时代的八大工业大数据应用场景

物联网时代的八大工业大数据应用场景

工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。

随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。

工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文将对工业大数据在制造企业的应用场景进行逐一梳理。

1.加速产品创新

客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。

这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。

2.产品故障诊断与预测

这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。在马航MH370失联客机搜寻过程中,波音公司获取的发动机运转数据对于确定飞机的失联路径起到了关键作用。我们就拿波音公司飞机系统作为案例,看看大数据应用在产品故障诊断中如何发挥作用。在波音的飞机上,发动机、燃油系统、液压和电力系统等数以百计的变量组成了在航状态,这些数据不到几微秒就被测量和发送一次。以波音737为例,发动机在飞行中每30分钟就能产生10TB数据。

这些数据不仅仅是未来某个时间点能够分析的工程遥测数据,而且还促进了实时自适应控制、燃油使用、零件故障预测和飞行员通报,能有效实现故障诊断和预测。再看一个通用电气(GE)的例子,位于美国亚特兰大的GE能源监测和诊断(M&D)中心,收集全球50多个国家上千台GE燃气轮机的数据,每天就能为客户收集10G的数据,通过分析来自系统内的传感器振动和温度信号的恒定大数据流,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。风力涡轮机制造商Vestas也通过对天气数据及期涡轮仪表数据进行交叉分析,从而对风力涡轮机布局进行改善,由此增加了风力涡轮机的电力输出水平并延长了服务寿命。

3.工业物联网生产线的大数据应用

现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

4.工业供应链的分析和优化

当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。

以海尔公司为例,海尔公司供应链体系很完善,它以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合全球供应链资源和全球用户资源。在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。美国较大的OEM供应商超过千家,为制造企业提供超过1万种不同的产品,每家厂商都依靠市场预测和其他不同的变量,如销售数据、市场信息、展会、新闻、竞争对手的数据,甚至天气预报等来销售自己的产品。

利用销售数据、产品的传感器数据和出自供应商数据库的数据,工业制造企业便可准确地预测全球不同区域的需求。由于可以跟踪库存和销售价格,可以在价格下跌时买进,所以制造企业便可节约大量的成本。如果再利用产品中传感器所产生的数据,知道产品出了什么故障,哪里需要配件,他们还可以预测何处以及何时需要零件。这将会极大地减少库存,优化供应链。

5.产品销售预测与需求管理

通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。在某些分析中我们可以发现,在开学季高校较多的城市对文具的需求会高很多,这样我们可以加大对这些城市经销商的促销,吸引他们在开学季多订货,同时在开学季之前一两个月开始产能规划,以满足促销需求。对产品开发方面,通过消费人群的关注点进行产品功能、性能的调整,如几年前大家喜欢用音乐手机,而现在大家更倾向于用手机上网、拍照分享等,手机的拍照功能提升就是一个趋势,4G手机也占据更大的市场份额。通过大数据对一些市场细节的分析,可以找到更多的潜在销售机会。

6.生产计划与排程

制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。

7.产品质量管理与分析

传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。这些海量数据究竟是企业的包袱,还是企业的金矿呢?如果说是后者的话,那么又该如何快速地拨云见日,从“金矿”中准确地发现产品良率波动的关键原因呢?这是一个已经困扰半导体工程师们多年的技术难题。

某半导体科技公司生产的晶圆在经过测试环节后,每天都会产生包含一百多个测试项目、长度达几百万行测试记录的数据集。按照质量管理的基本要求,一个必不可少的工作就是需要针对这些技术规格要求各异的一百多个测试项目分别进行一次过程能力分析。如果按照传统的工作模式,我们需要按部就班地分别计算一百多个过程能力指数,对各项质量特性一一考核。这里暂且不论工作量的庞大与繁琐,哪怕有人能够解决了计算量的问题,但也很难从这一百多个过程能力指数中看出它们之间的关联性,更难对产品的总体质量性能有一个全面的认识与总结。然而,如果我们利用大数据质量管理分析平台,除了可以快速地得到一个长长的传统单一指标的过程能力分析报表之外,更重要的是,还可以从同样的大数据集中得到很多崭新的分析结果。

8.工业污染与环保检测

《穹顶之下》令人印象深刻的一点是通过可视化报表,柴静团队向观众传递雾霾问题的严峻性、雾霾的成因等等。

这给我们带来的一个启示,即大数据对环保具有巨大价值。《穹顶之下》图表的原生数据哪里来的呢?其实并非都是凭借高层关系获取,不少数据都是公开可查,在中国政府网、各部委网站、中石油中石化官网、环保组织官网以及一些特殊机构,可查询的公益环保数据越来越多,包括全国空气、水文等数据,气象数据,工厂分布及污染排放达标情况等数据等等。只不过这些数据太分散、太专业、缺少分析、没有可视化,普通人看不懂。如果能够看懂并保持关注,大数据将成为社会监督环保的重要手段。近日网络上线《全国污染监测地图》就是一个很好的方式,结合开放的环保大数据,网络地图加入了污染检测图层,任何人都可以通过它查看全国及自己所在区域省市,所有的在环保局监控之下的排放机构(包括各类火电厂、国控工业企业和污水处理厂等)的位置信息、机构名称、排放污染源的种类,最近一次环保局公布的污染排放达标情况等。可查看距离自己最近的污染源,出现提醒,该监测点检测项目,哪些超标,超标多少倍。这些信息可以实时分享到社交媒体平台,告知好友,提醒大家一同注意污染源情况及个人安全健康。

总结工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。

以上是小编为大家分享的关于物联网时代的八大工业大数据应用场景的相关内容,更多信息可以关注环球青藤分享更多干货

⑤ 发展物联网会产生哪些经济效益与社会效益

举例工业领域,众所周知中国在工业领域是一直落后于西方国家的,那么我国传统工业如何在未来“工业物联网中”弯道超车呢?
智能制造目前来说还很遥远,不仅涉及到人工智能、机器人,而且需要各个领域(物流、制造、财务)共同实现智能才行,目前来看并不现实。
所以我们可以利用“物联网”技术先实现数字化工厂!通过给每一个生产设备加装智能盒子完成自动采集数据,所有车间能产生的数据都经过云端大数据运算再在用户手机端显示。实现数字化,实现“互联网+”,才能完成柔性生产!才能弯道超车!

⑥ 工业物联网可以实现哪些功能

物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
整体感知即可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。可靠传输是通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理即使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:

⑦ 物联网现状和发展前景

在过去的几年里,物联网蓬勃发展。根据行业研究,到2021年,全球将安装350亿台物联网设备,到2025年将安装754.4亿台。本质上,作为一个技术驱动的互联设备网络,物联网有潜力更好地实现系统内的数据共享。它让机器和设备进行交互的能力将会对各行各业行业产生积极影响。

从使用物联网设备的数据密集型体验到基本的健康和安全需求,几乎没有什么趋势能够超越它,从而加剧了其重要性。


1.连网设备制造商将投资医疗保健

远程医疗需求仍有望继续增加。据行业专家称,由于便利和更实惠的价格,消费者对数字医疗设备的兴趣越来越大,到2026年,该技术将增长至1856亿美元。


2.物联网将在制造业普及

制造业和其他使用昂贵机器的环境已经体验到了远程监控的好处。在物联网驱动技术的帮助下,制造商和制药企业今年能够将工业资产与远程操作连接起来,确保在大流行期间一切如常。根据行业报告,这些好处和积极影响有望在2021年为物联网带来大量投资。基础行业专家、特别是现场服务公司和工业设备公司将越来越多地使用此技术,从而使连网机器在2021年继续获得发展动力。


3.行为互联网有望发展壮大

行为互联网(IoB)从各种来源捕获人们生活的“数字信息”,公共或私人实体可以利用这些信息来影响行为。

这里的一些有用的技术工具包括位置跟踪、大数据和面部识别。这一趋势凸显了将客户放在每个组织战略中心的重要性,以确保长期成功。


4.智能建筑技术将推动员工体验转型

根据2021年的行业报告,智能建筑技术将专注于物联网应用,以实现智能办公举措。这些举措将包括智能照明、能源和环境监测,以及基于传感器的空间利用和活动监测。

⑧ 工业物联网是近几年我国物联网的一个重点发展方向

工业物联网是一种:数字时代先进生产模式,通过将感知技术、通信技术、传输技术、数据处理技术、控制技术,运用到生产、配料、仓储等所有阶段,实现生产及控制的数字化、智能化、网络化,提高制造效率,改善产品质量,降低产品成本和资源消耗,最终实现将传统工业提升到智能化的新阶段。同时,通过云服务平台,面向工业客户,融合云计算、大数据能力,助力传统工业企业转型。

物联网、工业4.0等概念既有交集也有差异。随着工业化与信息化的深度融合,企业内部互联互通的需求渐增,通过接入网络进而达到提高产品质量和运营效率的需求更为强烈,工业物联网应运而生。

——以上数据来源参考前瞻产业研究院发布的《中国物联网行业细分市场需求与投资机会分析报告》。

⑨ 工业物联网怎么做

一、将真实的加工制造连接到工业4.0

如果使用了工业4.0技术,一个新的加工制造生产线可以实现多达25种的产品变化,同时将产量提高10%,库存减少30%。工业4.0架构的应用让制造商在生产过程中可以获得更丰厚的投资回报率。

工业4.0是一场工业的革命,目的是将信息技术(IT)的虚拟世界、机器的物理世界以及互联网合为一体。其中心是将具有IT功能的所有工业领域都整合起来。这些科技提高了灵活度和速度,能够使产品更具有个性化,生产更高效且规模可扩展,以及在生产控制方面具有更高的可变性。机器与机器之间的通讯和先进的机器智能化,提高了工艺的自动化水平,并带来了更多的自我监控以及实时数据。开放的基于Web的平台会增加制造企业的竞争力。
1.分布式智能

这里说的分布式智能是指在智能传动和控制技术网络的机器设备中,加入尽可能多的智能和控制功能、或者单独的传动轴,而不是从一个中央处理单元(CPU)来处理所有的动作。

拥有机器层面的过程数据并决定用它做什么,反映出了人们相信一台机器可以经过装备使用过程数据做一些事情并且独自改善工艺流程,诸如实现调整产量、更加有效率的利用能源等目标,而不是依赖“云”来处理所有这些任务。

联网的机器可以与更高的生产线级别、工厂级别以及企业级别的网络进行通讯,从而能够实现对特定事件或特定产品的实时调节。集成了传动的伺服马达和无机柜传动系统将传动组件和运动逻辑顺序放到了单独的轴向上。

2.快速连接

那些允许数据在整个企业架构中自由流动的系统,往往需要持续的投资和改进。一家工业4.0工厂车间所产生的大数据和信息流,可能会让公司的网络不堪重负。我们该如何改进自动化系统中的硬件和软件的功能,使这种设计流程更简单、花费更少的时间以及更加开放?通讯路径随着其创建和实施而变得更加流畅。在决定应该使用现场总线的什么功能时,应该看一下生产平台是否支持例如OPC
UA(来自于OPC基金会)这样的标准。消除不同供应商系统的障碍,而且对通讯和控制平台采取一种更加开放的方式很重要。

3.开放标准和系统

重点是要思考系统到底“开放”到什么程度,是否支持新兴的通讯协议和软件标准,以及开放的独立组件如何让工业4.0成为现实。

开放标准允许基于软件的解决方案可以更加灵活地集成,并有可能将新的技术移植进现有的自动化架构中。开放的控制和工程软件也沿着这个方向将自动化和IT软件程序之间的间隙弥合。一个开放的控制器核心能够使用常用的高级IT语言(例如Java和C++)来创建自动化应用程序。

一台机器的操作应该支持与智能手机或平板电脑进行简单的连接。软件可以借助控制器与3D模型软件的连接来加快自动化系统的设计和调试。一个运动控制器可以与模型之间发送指令以及接收反馈,使得机器的功能性在机械设计阶段通过运动控制就得到优化。这也让机器测试和编程可以在调试之前进行。在部件订货、组装机器之前,虚拟机器可以用来进行测试并完善设计。

4.实时数据整合

在工业4.0的工厂里,可能利用实时的机器和工厂性能数据来改变自动化系统和生产工艺的管理方式。不用捕捉并分析数月以来有价值的关于生产率、机器停机时间或者能源消耗的数据,支持工业4.0的平台能够将数据整合到常规的工厂管理报告之中。这会让制造商和机器具备详细的信息来执行快速的工艺和生产变更,以实现产品满足特定客户需求的愿景。

5.自适应性

现实世界中的主动性可以让生产更加连贯并以需求为导向。科技帮助生产线变得主动。目标就是让工作站和模块可以适应个性化的客户或产品需求。

在一个制造液压阀的工厂里,一套新的自适应组装生产线在每一件被加工件上都使用射频识别芯片。生产线上的9个智能站会识别出最终产品是如何被装配的,以及哪些工具设置和操作步骤是必须的。每个相关加工件都带有蓝牙标签,会自动将信息传送给装配站。装配步骤信息会根据不同的产品以及相关加工件的技术水平不同而显示出来。该生产线可以生产一批相同尺寸的液压阀,也可以不需要人工干预就能生产25种不同产品型号。不再需要设定时间或者多余的库存。这使得生产线的产量增加了10%,库存减少了30%。
二、让工业4.0和IIoT在智能工厂里运行

工业4.0和工业物联网(IIoT)能够为设备(从传感器到大规模控制系统)、数据和分析之间提供更好的连接性,Beckhoff自动化的TwinCAT产品专家Daymon
Thompson这样认为。传感器和系统需要网络连接来共享数据,分析有助于做出更明智的决策。

物联网主要包括4个基本元素:实体的设备、与设备之间的双向连接、数据以及分析。设备可以是小到一个传感器大到一个大规模控制系统中的任何一种。传感器和系统需要与更大的网络进行连接,以共享由传感器或系统产生的数据。对此数据进行的分析会产生可执行的信息,其结果是让人们做出精明的决策。

在IIoT的实际应用中,
企业通过将设备或资产连接到云或者本地信息技术(IT)设施上来进行数据的采集和传送。然后对采集到的数据进行分析,可以发现设备或资产更多的潜在信息,防患于未然。

例如
,监控机械组件运行温度的传感器可以追踪任何异常状况或者偏离底线的情况。这使公司可以主动地处理不希望发生的行为,从而在可能造成有害危险的系统故障加剧之前进行预测性维护,否则这些系统故障可能会导致工厂停机以及生产收益损失。这种类型的信息有助于企业新产品的设计、系统性能效率的提高以及实现利润的最大化。

工业4.0让加工制造更灵活

在一个生产制造流程,甚至是整个供应链中,通过连接性推动更多的新发现和系统优化,这是工业4.0的核心概念之一,这种科技进步也被称为第四次工业革命。

工业4.0工作组成员、德国国家科学与工程院Acatech,将18世纪蒸汽机的发明和广泛使用定义为第一次工业革命。第二次革命是20世纪早期在装配线上使用传送带。第三次革命是在20世纪中叶开发出来的微电子学、PC和可编程逻辑控制器(PLC)。第四次革命是将PC和机器连接到互联网,并启用信息物理系统(CPS)。

工业4.0要求传统的生产制造工业实现计算机化。使用物联网和信息物理系统的概念会帮助实现“智能工厂”的目标,使生产制造具有前所未有的灵活性和非常高的精益生产效率。在生产制造中,一个显着的特点是重点关注的领域从产品本身扩展到了生产这些产品的工艺上。

制造商需要灵活的生产线来适应快速变化的客户需求。灵活的机器运行能够生产很多类型的产品,通过调整批量大小来获得更高的生产利润,这使得同一个生产线可以运行更复杂的混合产品以适应客户不断变化的需求。

阅读全文

与工业物联网如何在化工企业发展相关的资料

热点内容
奔驰空调滤芯有什么优势 浏览:674
奔驰b200红色是什么颜色 浏览:361
比奔驰快的车有哪些 浏览:431
汽车隐身衣是什么 浏览:833
汽车远光灯多久才会大亮 浏览:102
奔驰260轮胎补胎多少钱 浏览:65
奥迪q8和v6哪个好 浏览:164
如果购买新能源汽车需要哪些流程 浏览:833
汽车雨刷器打开关不动怎么回事 浏览:297
长城汽车员工有哪些 浏览:249
奥迪a8与陆巡哪个好 浏览:182
西涌汽车站在哪里 浏览:232
汽车大屏导航如何换主题 浏览:689
深圳普联科技园在哪个工业区 浏览:671
山东工业联盟对企业有什么好处 浏览:812
宝马325i什么意思 浏览:362
汽车哪些地方要润滑油 浏览:918
2021款奥迪a6l怎么换空滤 浏览:613
汽车抛锚了需要多久能修好 浏览:560
奥迪a3丐版上路要多少钱 浏览:329