1. 请问大数据的关键技术有哪些
大数据开发涉及到的关键技术:
大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构岩友化、半结构化及非结构化的海量数据。
大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检粗知槐查一致性等操作。
大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
大数据处理技术
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
大数据分析及挖掘技术
大数据处理的核心就是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。
大数据展示技术
在大数据时代下,数据井喷似地增长,分析人员将这些庞大的数据汇总并进行分析,而分析出的成果如果是密密麻麻的文字,那么就没有几个人能理解,所以我们就需要将数据可视化。
数据可视化技术主要指的是技术上较为高级的技术方法,这些技术方法通过表达、建模,以及对立体、表面、属性、动画的显示,对猛此数据加以可视化解释。
2. 简述传统数据采集的关键技术有哪些他们之间的关系是什么
大数据采集技术,大数据预处理技术,大数据存储及管理技术,大数据分析及挖掘技术,大数据展现与应链备宽用技术
数据采集是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据存储与滚销管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的棚亮运行效率,大大提高整个社会经济的集约化程度。
3. 工业人工智能的关键技术
(1)硬件
人工智能必须依靠算力、算法和数据,这些需要硬件为基础,必须具备专门的图像、语音等处理能力强、运算速度高的硬件。在分散处理、现场传感检测时,通常采用专门的人工智能(AI)芯片作为底层硬件,通常称为边缘计算网关。AI芯片按架构体系分为通用芯片CPU和GPU(图像处理单元)、半定制芯片FPGA、全定制芯片ASIC和模拟人脑的新型类脑芯片;按照应用场景可分为训练芯片、推断芯片、终端计算芯片等。人工智能先采用训练芯片训练数据得出核心模型,接着利用推断芯片对新数据进行判断推理得出结论,模型和推理也可以从已有的SDK(软件工具开发包)中获取,终端计算芯片主要采用简单实时性能的边缘计算控制输出。
(2)传感
人工智能场景中面对丰富多样和大量的各种数据及相关技术,其中绝大部分数据来源于传感器。传感器能将被测量的各种信息转变成相关数字信号,通常需要将电量、物理量、生物量、视觉、味觉、听觉等进行感知,涉及到感知的精度、速度等。一种新型传感器的发明,往往可以开发出相应的姿橡仪器装置。传感器分为常规传感器和智能传感器:常规传感器可以直接采集转换处理压力、温度、流量、电压等信号;智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。与一般传感器相比,智能传感器通过软件技术可以实现低成本、高精度的信息采集,具有编程自动化、功能多样化等显着特点,已广泛应用于各种视觉、听觉、物理量和电量等传感检测。
(3)检测
工业人工智能系统的各个环节涉及供应链、产品生产质量、设备状态、能耗、生产环境等,这些需要大量的生产前期各种基础、生产物流、设备和环境等外界状态感知数据收集,并进行数据融合分析。这些检测的精度、速度、可靠性、分析能力等性能以及价格决定了生产应用的基础。目前成品和部件从离线集中式检测,逐步迹春旁转变为加工在线、实时、嵌入到生产线及设备内部的检测;从独立的感知和检测转变为多传感器、多元异构数据的融合分析;从当前数据状态转变为数据标准化和溯源。检测延伸就包含了诊断,当生产过程异常导致产品质量下降或者事故时,利用传感器采集关键设备、生产线运行以及产品质量等获得各种智能检测数据,进行自动特征提取,采用大数据分析、深度学习等方法进行高精度智能诊断及溯源。
(4)数据
人工智能是建立在强大数据分析基础上的,现在计算机的大容量、高速运算能力和网络云平台给大数据应用提供了极大的可行性和便利性。大数据通常用来形容各行各业运行过程中发生的大量不同时序、多元异构的数据,往往看起来这些数据关联性不够紧密,在关系型数据库中分析时需要花费大量时间和资源进行处理。大数据森罩不只是数据量大,而且数据种类多。要求实时性强。数据所蕴藏的价值大。各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律,获得规律性、有用的数据。
(5)建模
建模是认识生产过程对象和控制方法的最基本环节,不同产品、生产过程和控制要求涉及的模型差异较大,甚至难以找到相关的模型。特定模型包含工业生产过程的机制与知识,表达了生产设备、工艺参数、原材料和产品质量效率间的映射关系,设备或关键部件的退化机制,产线运行状况和工序之间的耦合关系。人工智能控制对象更加复杂和多样,往往是多输入多输出的多变量系统、非线性系统、时变系统。要求控制系统更快、精、复杂时,必须采用状态空间法、离散模型、人工智能等理论进行建模和控制。
(6)决策
决策包括优化、调度和控制等。由于产品、工艺和设备等不同,决策的方式差别很大。复杂工业生产通常由多工序、多台套设备和不同加工要求组成,涉及实时市场信息、生产条件以及运行工况,企业目标、计划调度、运行指标、生产指令与控制指令一体化优化等,需要协同企业管理者和生产管理者的知识并进行智能化处理。以ERP和MES变革为人机合作的管理与决策智能化系统,利用监测设备和产线运行状态的数据,借助智能优化算法,协同调度各个生产工序,控制相关的生产设备和工艺环节,实现生产全流程的产品质量、产量、消耗、成本等综合生产指标控制,保证生产全流程的整体优化运行决策。自主智能控制系统感知生产条件变化,相互协同,解决多目标冲突、干涉和多尺度现象,兼顾各种因素和权重影响,制定相应的优化决策目标,实现制造与生产全流程全局优化。
(7)预测
预测技术分为模型方法和数据驱动方法,在预测性维护、需求预测、质量预测等方面应用广泛。预测大多用于智能制造中设备维护,但是预测对工业生产整体或者其他关键环节的作用更加重要,比如产品成本价格和质量的趋势、产品原材料成本和质量的趋势、产品销售方式和市场趋势等,这些比起设备维护的预测可能更加重要。比如最近缺芯事件对 汽车 产业的影响、原材料涨价对产品的影响等,其影响远远超过制造产品效率的提升。大数据技术、云服务技术和人工智能技术的快速发展促进了预测技术不断提升。
预测性维护可利用工业设备运行数据和退化机制经验知识,预测设备剩余正常工况使用时间并制定维修策略,从而实现高效安全运行。需求预测根据厂商 历史 订单数据、市场预测及生产线运行状况,调节原料库存、指导生产出货进度,进行风险管理并减少生产浪费。质量预测通过产线、原料状态及相关生产数据分析产品质量,并将生产流程调整为最佳产出状态以避免残次品,数字孪生技术可以有效促进质量预测。
4. 智能工业的智能工业的关键技术--物联网技术
智能工业的实现是基于物联网技术的渗透和应用,并与未来先进制造技术相结合,形成新的智能化的制造体系。所以,智能工业的关键技术在于物联网技术。 包括识别、定位、追踪、监控和管理的一种网络技术。
FRID、NFC,WSN 制造业供应链管理物联网应用于企业原材料采购、库存、销售等领域,通过完善和优化供应链管理体系,提高了供应链效率,降低了成本。空中客车(Airbus)通过在供应链体系中应用传感网络技术,构建了全球制造业中规模最大、效率最高的供应链体系。
生产过程工艺优化物联网技术的应用提高了生产线过程检测、实时参数采集、生产设备监控、材料消耗监测的能力和水平。生产过程的智能监控、智能控制、智能诊断、智能决策、智能维护水平不断提高。钢铁企业应用各种传感器和通信网络,在生产过程中实现对加工产品的宽度、厚度、温度的实时监控,从而提高了产品质量,优化了生产流程。
产品设备监控管理各种传感技术与制造技术融合,实现了对产品设备操作使用记录、设备故障诊断的远程监控。GE Oil&Gas集团在全球建立了13个面向不同产品的i-Center,通过传感器和网络对设备进行在线监测和实时监控,并提供设备维护和故障诊断的解决方案。
环保监测及能源管理物联网与环保设备的融合实现了对工业生产过程中产生的各种污染源及污染治理各环节关键指标的实时监控。在重点排污企业排污口安装无线传感设备,不仅可以实时监测企业排污数据,而且可以远程关闭排污口,防止突发性环境污染事故的发生。电信运营商已开始推广基于物联网的污染治理实时监测解决方案。
工业安全生产管理把感应器嵌入和装备到矿山设备、油气管道、矿工设备中,可以感知危险环境中工作人员、设备机器、周边环境等方面的安全状态信息,将现有分散、独立、单一的网络监管平台提升为系统、开放、多元的综合网络监管平台,实现实时感知、准确辨识、快捷响应、有效控制。 物联网的产业链即所谓的DCM(Device、Connect、Manage)跟工业自动化的三层架构是互相呼应的,在物联网的环境中,每一层次自原来的传统功能大幅进化,在Device(设备)达到所谓的全面感知,就是让原本的物,提升为智能物件,可以识别或撷取各种数据;而在Connect(连接)层则是要达到可靠传递,除了原有的有线网络外更扩展到各种无线网络;而在Manage(管理)层部分,则是要将原有的管理功能进步到智能处理,对撷取到的各种数据做更具智能的处理与呈现。
传统的工业自动化控制系统主要包括3个层次,分别是设备层(device layer)、控制层(control layer)、以及信息层(information layer)。设备层的功能是将现场设备以网络节点的形式挂接在现场总线网络上,依照现场总线的协议标准,设备采用功能模块的结构,通过组态设计,完成数据撷取、A/D转换、数字滤波、温度压力补偿、PID控制等各种功能;控制层是自动化的基础,从现场设备中获取数据,完成各种控制、运行参数的监测、警报和趋势分析等功能,控制层的功能一般由工业计算机或PLC等控制器完成,这些控制器具备网络能力以协调网络节点之间的数据通信,同时也实现现场总线网段与以太网段的连接;第三层信息层提供实现远程控制的平台,并连接到企业自动化系统,同时从控制层提取有关生产数据用于制定综合管理决策。
自另一个角度来,物联网可以使所谓的自动化跟信息化‘两化融合’的愿景更具体实现,自动化业者长期以来都朝着信息化目标前进,在物联网的基础下,原先传统的C/S(Client/Server)架构,可以转换成B/S(Browser/Server)架构,在生产制造、智能建筑、新能源、环境监控、以及设备控制领域有更广泛的应用。具体而言,自动化资料如果没有经过讯息化的集成,一般使用者还是无法使用;同样的,如果仅有讯息化功能,却缺乏自动化的内容,一样也是空泛无用,两者缺一不可。 与未来先进制造技术相结合是物联网应用的生命力所在。物联网是信息通信技术发展的新一轮制高点,正在工业领域广泛渗透和应用,并与未来先进制造技术相结合,形成新的智能化的制造体系。这一制造体系仍在不断发展和完善之中。概括起来,物联网与先进制造技术的结合主要体现在8个领域。
泛在感知网络技术建立服务于智能制造的泛在网络技术体系,为制造中的设计、设备、过程、管理和商务提供无处不在的网络服务。面向未来智能制造的泛在网络技术发展还处于初始阶段。
泛在制造信息处理技术建立以泛在信息处理为基础的新型制造模式,提升制造行业的整体实力和水平。泛在信息制造及泛在信息处理尚处于概念和实验阶段,各国政府均将此列入国家发展计划,大力推动实施。
虚拟现实技术采用真三维显示与人机自然交互的方式进行工业生产,进一步提高制造业的效率。虚拟环境已经在许多重大工程领域得到了广泛的应用和研究。未来,虚拟现实技术的发展方向是三维数字产品设计、数字产品生产过程仿真、真三维显示和装配维修等。
人机交互技术传感技术、传感器网、工业无线网以及新材料的发展,提高了人机交互的效率和水平。制造业处在一个信息有限的时代,人要服从和服务于机器。随着人机交互技术的不断发展,我们将逐步进入基于泛在感知的信息化制造人机交互时代。
空间协同技术空间协同技术的发展目标是以泛在网络、人机交互、泛在信息处理和制造系统集成为基础,突破现有制造系统在信息获取、监控、控制、人机交互和管理方面集成度差、协同能力弱的局限,提高制造系统的敏捷性、适应性、高效性。
平行管理技术未来的制造系统将由某一个实际制造系统和对应的一个或多个虚拟的人工制造系统所组成。平行管理技术就是要实现制造系统与虚拟系统的有机融合,不断提升企业认识和预防非正常状态的能力,提高企业的智能决策和应急管理水平。
电子商务技术制造与商务过程一体化特征日趋明显,整体呈现出纵向整合和横向联合两种趋势。未来要建立健全先进制造业中的电子商务技术框架,发展电子商务以提高制造企业在动态市场中的决策与适应能力,构建和谐、可持续发展的先进制造业。
系统集成制造技术系统集成制造是由智能机器人和专家共同组成的人机共存、协同合作的工业制造系统。它集自动化、集成化、网络化和智能化于一身,使制造具有修正或重构自身结构和参数的能力,具有自组织和协调能力,可满足瞬息万变的市场需求,应对激烈的市场竞争。 从整体上来看,物联网还处于起步阶段。物联网在工业领域的大规模应用还面临一些关键技术问题,概括起来主要有以下几个方面。
工业用传感器工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系。
工业无线网络技术工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度重视。
工业过程建模没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。
此外,物联网在工业领域的大规模应用还面临工业集成服务代理总线技术、工业语义中间件平台等关键技术问题。
智能工业的价值
工业化的基础是自动化,自动化领域发展了近百年,理论,实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控信息而通过操作员来集中管理。但操作员的水平决定了整个系统的优化程度。有经验的操作员可以使生产最优,而缺乏经验的操作员只是保证了生产的安全性。是否有办法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步操作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外“物”获得了信息是不能做出决策的,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最有决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。
5. 请问大数据的关键技术有哪些
大数据处理关键技术包括大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展拆带现和应用、大数据检索、大数据可视化、大数据应用和大数据安全等。
大数据技术是从各种类型的数据中快速获得有价值信息的咐枝技术。大数据领域已经涌现衡御敏出大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
6. 大数据的关键技术有哪些_大数据处理的关键技术有哪些
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分早李烂析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方扰帆式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据陆漏并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统)本回答根据网络文库资料整理,原文请参见《大数据关键技术》
7. 请问大数据的关键技术有哪些
分布式计算,非结构化数据库,分类、聚类等算法。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
(7)工业数据的关键技术有哪些扩展阅读:
大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
8. 大数据关键技术有哪些
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术散嫌是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。
因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。
2、大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、雀晌抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
3、大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
4、大数据处理
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
(8)工业数据的关键技术有哪些扩展阅读:
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大顷掘锋数据的印迹。
1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
9. 工业数据采集需要学习哪些知识
工业数据采集分为三部分:
底层的设备接口:需要了解设备接口上位机协议,常用传感器
中间的数据采集传输:常用的工业数据采集卡(可以自己开发),OPC,物联网网关
10. 工业互联网的应用技术包括什么
工业互联网的本质和核心是通过工业互联网平台把设备、生产线、工厂、供应商、产品和客户紧密地连接融合起来。