『壹』 BloomFilter詳解(布隆過濾器)
從上式中可以看出,當m增大或n減小時,都會使得誤判率減小,這也符合直覺。
現在計算對於給定的m和n,k為何值時可以使得誤判率最低。設誤判率為k的函數為:
這說明了若想保持某固定誤判率不變,布隆過濾器的bit數m與被add的元素數n應該是線性同步增加的。
三 如何設計bloomfilter
此概率為某bit位在插入n個元素後未被置位的概率。因此,想保持錯誤率低,布隆過濾器的空間使用率需為50%。
bloomfilter的各個參數的錯誤率
公式推完了,大家可以看看,裡面的數學公式基本用到了指數函數 對數函數 微積分求導法則 概率論的知識,大家可以補充看下課本。
個人介紹:杜寶坤,京東聯邦學習從0到1構建者,帶領團隊構建了京東的聯邦學習解決方案,實現了電商營銷領域支持超大規模的工業化聯邦學習解決方案,支持超大規模樣本PSI隱私對齊、安全的樹模型與神經網路模型等眾多模型支持,並且實現了廣告側等業務領域的落地,開創了新的業務增長點,產生了顯著的業務經濟效益。
個人喜歡研究技術。基於從全鏈路思考與決策技術規劃的考量,研究的領域比較多,從架構、數據到演算法與演算法框架均有涉及。歡迎喜歡技術的同學和我交流,郵箱: [email protected]