導航:首頁 > 汽車產業 > 如何用工業大數據創造價值

如何用工業大數據創造價值

發布時間:2022-11-02 05:20:17

⑴ 大數據可以通過以下哪些方式為企業創造價值

knowlesys輿情認為:

大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據提升競爭力?這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。

企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。

成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。

服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。

產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。

⑵ 工業製造大數據分析

工業製造大數據分析
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
如何實現智能製造是大家都關心的問題。從哈佛商學院的邁克爾·波特到賓夕法尼亞大學沃頓商學院,有一個普遍的共識,即數字化轉型是智能製造實現的途徑。重要的是,這個共識也來自於眾多的世界級製造業企業與企業家們。
這一共識是基於無數技術趨勢的融合,例如,物聯網、賽博系統(CPS)、工業物聯網、移動技術、人工智慧、雲計算、虛擬/虛擬增強現實(VR/AR),以及大數據分析等。我們一定要保持清醒,不要簡單地認為有了這些技術,未來五年就是製造業的黃金時期。道理很簡單,這個新製造業文化的變革進程是相當復雜和艱難的,沒有行業、企業與用戶的融合推進,無法實現這次變革。數字化轉型不僅僅意味著企業簡單的數字化,而是把數字作為智能製造的核心驅動力,利用數據去整合產業鏈和價值鏈。
自工業革命以來,為了改進運營,製造商一直以來都在有意地採集並存儲數據。隨著時間的推移,數據在製造業分析的需求將越來越大。然而在過去的許多年間,利用數據的根本動因並沒有改變,數據的復雜性增強,數據轉化為情報的能力越來越大。
2012年高德納給出大數據定義,其中特別強調大數據是多樣化信息資產,不僅關注實際數據,更關注大數據處理方法。數據量大小本身並不是判斷大數據價值的核心指標,而數據的實時性和多元性對大數據的定義和價值更具直接的影響。
在討論工業大數據分析的時候,我注意到兩種不同的觀點:
第一種觀點認為,製造業向來都有大數據。幾十年來我們的企業一直在通過歷史記錄、MES、ERP、EAM等各種應用系統採集數據。在部分產業鏈環節,特別在市場營銷方面,大數據算是一個新的熱詞。
第二種觀點認為,從工業大數據角度看,製造業是一個尚未打開的市場或剛剛開啟的市場。存在大量不同類型的數據,但如今它們還未被應用到分析之中。
考慮到這些觀點,面對任何新的市場提法,包括名詞解釋、定義或分析框架,我們始終都應該保持適當的懷疑精神。這里我更多傾向於第二個觀點。我們的製造業的確有「大量數據」,但這並不是我們大多數人從市場上所理解的「大數據」涵義。在搞清楚工業大數據分析之前,我們應該如何定義製造業的大數據?這里可以通過大數據的三個特性,進一步了解大數據的特性。
數據來源
工業大數據的主要來源有兩個,第一是智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採集的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購、生產、物流與銷售內部流程以及外部互聯網信息等。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現對客戶的分析和挖掘,它的應用場景包括了實時核心交易、服務、後台服務等。
數據關系
數據必須要放到相應的環境中分析,才能了解數據之間的關系。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到可能產生問題的根源,消除已知錯誤,並確保解決方案的可靠有效。一旦找到並確定了根本原因,同時具備了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用、與事件相關的信息,以確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
數據價值
對於數字化轉型,大數據不僅要關注實際數據量的多少,最重要的是關注大數據的處理方法在特定場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報(ROI)的設計,一味尋求大數據,則大數據分析既無法落地也無法為企業創造價值。
工業大數據分析的定義
發動機是飛機的心臟,也是關乎航空安全,生命安全的重中之重。為了實時監控發動機的狀況,現代民航大多安裝了飛機發動機健康管理系統。通過感測器、發射系統、信號接收系統、信號分析系統等方式採集到的數據,會經由飛機通信定址與報告系統,通過甚高頻或者衛星通信傳輸出來,這就是為何GE的發動機監控系統每天會獲取超過1PB數據的原因。
生產執行系統(MES)與飛機發動機健康管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程變數、測量結果等數據。基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱為製造業的大數據分析。
數據類型的多樣性是工業大數據分析的重要屬性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
例如,生產環境中收集的時間序列模擬流程變數,數據的類型是單一的,很容易建立索引,即使存在千千萬萬,也不足以成為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,對這些工作,基本的統計展現就可以完成。一些大數據的資料庫或數據湖的構成部分也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理、生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對企業生產智能的意義
製造業創新的核心就是要依託大量的前沿科技。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP、EAM等系統與工業自動化的相關系統整合為一體。在一體化製造運作管理的基礎上,我們可以實現集IT+MOM+MES+BI的一體化製造企業信息系統解決方案。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商(MIV,MainInformation systems Vendor )定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
特別需要注意的是,企業管理信息平台被普遍認為是製造企業管理的集成和儀錶板工具。許多供應商既大量投資其與ERP和自動化系統專有的集成,也投資開放式集成,還投資儀錶板和移動技術,希望隨時隨地為需要正確信息的決策者提供衡量標准。
製造業大數據分析的三種途徑
途徑一,利用開放技術與平台,將任何系統的數據移動到任何其他地方。
製造運作管理系統建設項目是系統工程,不僅僅是一套我們理解的傳統軟體系統,更多的是項目執行和服務的平台。這需要在項目管理與製造企業的策略「客戶服務」上,體現出製造企業的綜合管理能力與軟實力。
整個平台要從前期、工程實施以及售後服務這三個大的階段來架構。在前期規劃中,要重視標准、設計與實施,特別是與管理一體化的信息系統形成統一的對接。有了前期統一規劃的制定,工程實施的環節可把行業的經驗、集成能力、實施能力、軟體開發能力等融合。特別需要在組織上建立和形成超級團隊的制度。而持續服務、長期經營,將物聯網應用融入與「軟體+雲服務」的互聯網+戰略是後續服務的考慮重點。
在製造業大數據分析工作中,必須要加強通過物聯網科技的應用對後續持續服務的支撐作業。通過工業物聯網,實現的及時響應客戶、物聯網軟硬體系統定期巡檢、提供應急備件、提供易耗品、完善應用等功能來加強和鎖定與企業的供應鏈企業之間的長期合作。通過管理平台與物聯網數據,可以持續為客戶提供有價值的服務。
途徑二,投資工廠內外系統架構堆棧中能夠處理結構性和非結構性數據的數據模型。
新技術是創新革命的核心,其中很重要一個特點就是集成,即製造運作管理系統MOM與ERP、EAM、OA、商業分析的集成,包括一鍵登錄、界面集成、消息推送、工作流集成、主數據、應用集成匯流排與平台。
由於這些系統之間主數據全部統一,所有系統之間的數據交互依靠應用系統匯流排進行數據交互,整合了跨系統的業務流程、工作流、服務流程等之後即實現無縫集成和分析。對於企業管理者來說,一鍵登錄後,可以根據不同的崗位,個性化制定並且顯示與管理最相關的必要信息。這就是互聯網所帶給我們的分享思路。
途徑三,通過時間序列、圖像、視頻、機器學習、地理空間、預測模型、優化、模擬和統計過程式控制制等先進的分析工具與製造業企業內的大數據平台結合分析,從而洞見尚未顯現的情況。通過感測器、感應器、傳輸網路和應用軟體等物聯網數據,與管理應用軟體結合起來,將是今後製造業大數據分析的一大方向。
培養企業內部大數據分析專家
作為一個行業,我們需要有機地發展行業特定的大數據分析工具集,這樣才能讓現在的行業專家,從足夠的數據科學中實現數字化轉型。為了推動轉型,我們需要一大批優秀的企業利用這種方法,並向其他人或同行證明其價值。

⑶ 工業互聯網怎麼讓大數據產生價值

工業互聯網怎麼讓大數據產生價值
在經歷了長達30年的經濟快速發展之後,現在,中國需要一個全新的增長模式。快速的城鎮化和工業化讓數億人擺脫了貧困,中國人的人均壽命提升了十年,中國一舉成為世界上最大的製造產品出口國和世界第二大經濟體。這樣的成就令世人矚目,不過對中國來說,這並不是件難事。中國迄今為止所取得的經濟增長都是來源於大量廉價勞動力推動的以出口為導向的製造業快速發展。
然而,強勁的消費需要更快速的工資增長來拉動——因而需要更快速地提高生產力。因此,中國需要加速從低成本生產向高附加值、高科技製造轉型。這是一個非常嚴峻的挑戰。大部分新興市場國家在轉型中失敗,陷入「中等收入陷阱」無法自拔:在這種境況中,人均收入沒有能夠向發達國家的高水平靠攏,而是停滯不前。
1、數字化創新提升競爭力
中國可以通過擁抱「工業互聯網」,擁抱這一輪正在改變全球經濟的數字創新來應對這個挑戰。工業互聯網是數字技術和物理技術、大數據與大機器的融合。通過部署電子感測器和雲分析,工業互聯網將傳統工業機器轉變為互聯資產,開創功能與效率的全新局面。
由數據分析得出的洞察可以實現預測性維護:提前處理潛在故障,避免意外停機。感測器和數據分析構建了一個數字化的網路——工廠車間的所有元素連接在一起,並與供應鏈和分銷渠道相連,提高製造過程的速度和靈活性——GE稱之為智慧工廠(BrilliantFactory)。現在3D列印等數字技術使一些新的製造流程成為可能,在提高生產速度的同時,降低了生產成本。
這些數字化的創新能夠大幅提升各行各業的效率和生產力,從而提升競爭力,使中國的某些行業在全球范圍內確立領導地位。
工業互聯網創新還能提升不同層面工人的能力。具有虛擬現實/增強現實能力的攜帶型和可穿戴設備可以使工人即時訪問信息、提供即時培訓、更有效地合作以及學習和借鑒其他同事積累的實踐經驗。
人們常常擔心新技術的出現因為提高了自動化水平而減少工作崗位。工業互聯網創新的發展方向不同於以往,工業互聯網使人與機器之間形成更強大的新型夥伴關系,並提升各個層面工人的能力和生產力。而近年來,中國在提升工人平均技能水平方面也取得了巨大的進展:1982年,年齡在25-29之間的中國人中只有不足1%的人口接受過高中及更高水平的教育;到2010年,這一比例已經超過20%,其中大部分集中在科學和工程學。教育水平的提高使中國的勞動力從這些創新中獲得巨大的收益;這也將為中國科學家和工程師的持續創新創造環境,為新型數字化工業技術的增長和傳播作出貢獻。
在這樣的背景下,數字化和智能工業作為一個重大趨勢,已不可逆轉。很多工業公司已經將數字化視為生存和發展的必要前提。盡管互聯網已經改變了消費領域,但這一價值在工業領域還有待釋放,在1990到2010年期間,工業生產力的年均增速為4%,但是,在過去的五年裡卻下降到了1%。如何將數字化轉化為價值,這是所有工業公司所需要解答的問題。
中國經濟正在經歷前所未有的結構化轉型,可以預見,服務業態將在整個GDP當中起到非常重要拉動作用。製造業在過往的中國GDP中占很大比例,但在隨著結構化轉型,未來的製造業將成為製造和服務並舉的行業,其中服務所創造的價值貢獻甚至會超過製造,從而打造出是高質量、高利潤、可持續增長的全新服務業態。
BCG的數據表明,中國經濟當今的轉型之當中,服務的價值在醫療、航空、能源以及有一些機械製造等行業領域都有體現,在未來,他們都將走上以服務成長拉動增長的路徑。所以製造業的轉型對於整個GDP的貢獻也由此成為重要的話題。
GE本身也是一個製造型企業,但這個百年老店也需要思考如何在新的國際競爭當中尋找突破創新之路。GE的工業互聯網在2012年來到中國,而這個戰略最早在五年前被提出,因為製造業本身面在尋求新的增長點方面走進了一個困境。在GE超過1000多億的營收和160億美元的純利潤當中,75%來自製造。但由於客戶市場和全球環境的變化,GE需要找重新思考如何服務於全球各行業的客戶。所以GE就提出了工業互聯網的概念,從根本上講,就是要把人與機器,機器與機器之間通過數據無縫連接,通過海量數據找到運營當中的瓶頸,降低成本,提升效率,從而進行整個核心競爭力的轉型。
工業互聯網同中國工業的智能化在中國的結合恰逢其時,這主要源於三個條件:經過20年的信息化建設,中國積累了很好的基礎設施;同時中國目前的製造業的轉型上升為國家戰略之一,迫切需要一些好的信息化手段、管理理念、創新來推動實現這一目標;最後,人才儲備也已經達到一定水平。
2、資產優化與運營優化
在製造業領域,工業互聯網在實現工業智能化主要著力於資產優化和運營優化。資產優化是基於一個事實,亦即製造企業的重資產特性。目前重資產企業最重要的關切就是產能過剩的挑戰,如何優化資產效率,提升資產的利用率,同時為客戶帶來一些關鍵的增值服務,通常也被衍生為裝備服務業。其次,是運營優化,中國企業所在的是相比德國提出工業4.0,我們還處在2.0甚至更粗放的階段。管理粗放,機能低下,信息化基礎薄弱等等,都是現在制約製造業發展的重要問題。所以如何使運營優化讓我們在崗的工人、管理人員,能夠和管理規章制度結合提升我們的效率,這是工業互聯網的著眼點,也是中國工業企業轉型迫切需要解決的,資產的優化、運營的優化。
目前中國有很多離散型的工廠,例如家電,電子類產品製造商,資產優化、對這些企業而言運營優化有重要的意義。而整個智能化有三個不同的層次:第一,經由感測器驅動的自動化。第二,實現全工廠級別的自動化。第三,包括供應鏈,供應鏈上下游的優化。
這一戰略也與中國的人口轉型相吻合。目前,中國的人口增速降低,老齡化加速。最近出台二胎政策暫時還不會影響到中國的人口發展趨勢。與此同時,較低的人口增長速度也意味著勞動力不再像過去幾十年那樣快速增長。現在,中國的工業面臨更加有限的人力資源。因此,為支持快速的經濟增長,必須更快速地提高生產力以彌補較慢的勞動力增長。
3、製造服務業與中國工業的轉型
回歸製造業在全球范圍內已經成為很多國家的戰略重點,不管是歐洲、美國還是中國。中國製造2025戰略通過「互聯網+」和工業結合,推進兩化深度融合。這也是業界、政府、企業共同面臨的一個挑戰,也是要深刻研討的一個話題。
從實施角度,要實現這三方面的優化要經過四個階段,第一階段,在沒有數據的情況下我們往往有盲人摸象的感受,就像你坐在軍中但缺乏前線匯報,這種作戰毫無智慧策略可言。所以數據化是非常重要的前提,大部分企業的決策和管理是基於經驗,哪怕有一些數據,也是局部不及時的,甚至是錯誤數據,這都會直接影響到最終結果,所以全局數據的採集是非常關鍵的。有了數據之後我們下一步希望可視化,所以在GE的智能工廠當中我們推出了數字鏈和數字雙胞胎的概念,通過信息可視化手段通觀工廠製造全流程,讓我們對生產力、生產資源、生產效率有了解。隨之而來的是控制,比對管理目標實施自動化、智能化控制,在流程式控制制、資源控制、物料控制等等,同時與製造工藝無縫相結合。最後一個環節是我們最期待的環節,也是價值釋放的部分,就是實現優化,基於全局數據基礎上我們可以實現預測,能夠對資源,對於市場,對於客戶的需求的預測性的指導下我們進行優化。
這四個階段就是剛才我們說互聯網在智能工廠的一個體現,說起來簡單,但是做起來確實是很困難的。縱觀中國的產業發展,工業和基礎設施還處在由硬體轉向軟硬體結合的過渡當中,據統計,2014年我國數字化研發設計工具普及率已達54%,關鍵工序數控化率達到30%。不過較發達國家,中國離互聯互通,軟硬體結合的工業體系距離還很遠。目前,我國高端感測器、智能儀器儀表、高檔數控系統、工業應用軟體等市場份額不到5%。
目前GE所提供的工業互聯網方案,最直接的價值就是幫助客戶實現零意外停機時間,目前GE每天監測和分析來自1000萬個感測器的5000萬項元數據,這些數據涉及資產價值達到萬億美元。基於Predix的APM幫助客戶將海量數據轉化為准確決策,及時、主動地確保資產安全、幫助設備更好地運行、消耗更少的燃料、更高效地部署服務,並最大限度地減少意外停機時間。更多APM解決方案和服務將有利於資產所有者和運營商降低維護成本和運營風險,同時提高可靠性。獲得「可完全預測的資產」對任何機構的都是終極目標。對於尚不成熟的機構來說,這似乎是一個無法實現的目標。但隨著資產運營者逐步接受這一觀念,它所帶來的諸多益處證明這一投資是值得的,APM將是實現資產預測性的根本基石。
在智慧工廠層面,其價值在於利用大數據、軟體、感測器、控制器和機器人提高生產力,從而實現資產和業務優化。智慧工廠的產品擁有四個要素:虛擬製造、感測器啟用自動化、工廠優化和供應鏈優化。GE目前在全球范圍內擁有400家工廠。為了改變這些工廠的管理方式並提高生產效率,我們在整個企業共有16個智慧工廠試點。2015年,我們計劃把試點數量增加到75個左右。
4、挑戰與關注
在整個工業互聯網的實施過程中,挑戰是毋庸置疑的,總結而言,我們在有四個需要非常關注的:
安全性。製造企業進行轉型不管走的是什麼路徑,目標是一致的,但是安全是非常重要的。傳統的信息化的安全不足以覆蓋到製造領域的安全,GE工業互聯網上倡導的安全,除了IT的安全還有OT的安全,就是工業技術的安全。
基礎設施:基礎設施從數據中心到網路,到大數據分析,到雲計算等等基礎設施的部署。
復合性人才。過去中國的20年,無論是信息化還是工業化過程中培養了很多人才,但是都過於單一化。工業化和信息化的深度融合之後,我們需要更多的是復合性人才,對工業材料了解,對信息業了解的,當然對我們管理也提出了很高的要求。因為技術是服務於業務的,剛才提到的最終是希望驅動企業,使它具備智能管理和持續創新的能力,從而提高它的核心競爭力。所以對於企業的經營者來講,也是一個挑戰,就是我們的管理技能如何和信息化技術,和先進材料技術多方面融合,給企業制定一個好的戰略。
業務模式的改變。技術的引入也會促使我們從上游產品設計到生產製造,到供應鏈,一直到市場服務形成一個全閉環的流程。每一個環節都會對我們傳統的運營模式和業務模式帶來沖擊,互聯網給消費領域帶來的改變每個人都感受到了,工業領域也是如此。比如說眾包在產品設計階段,現在已經被廣泛的使用了,我相信將來在供應鏈,在市場服務的時候如何更精準,更和消費者互動,這些都會對我們已有的模式帶來很大的改變,我們參與的很多項目當中都是著眼於這方面的改變。

⑷ 工業大數據應用在哪些方面

工業大數據應用在哪些方面?
1.加速產品創新
 
客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。
 
2.產品故障診斷與預測
 
這可以被用於產品售後服務與產品改進。無所不在的感測器、互聯網技術的引入使得產品故障實時診斷變為現實,大數據應用、建模與模擬技術則使得預測動態性成為可能。
 
3.生產線的大數據應用
 
現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。
 
4.工業供應鏈分析和優化
 
當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。
 
5.產品銷售預測與需求管理
 
通過大數據來分析當前需求變化和組合形式。大數據是一個很好的銷售分析工具,通過歷史數據的多維度組合,可以看出區域性需求佔比和變化、產品品類的市場受歡迎程度以及最常見的組合形式、消費者的層次等,以此來調整產品策略和鋪貨策略。
 
6.生產計劃與排程
 
製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,對於需要快速響應的APS來說,是一個巨大的挑戰。
 
大數據可以給予我們更詳細的數據信息,發現歷史預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。
 
幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。雖然,大數據略有瑕疵,只要得到合理的應用,大數據會變成我們強大的武器。當年,福特問大數據的客戶需求是什麼?而回答是「一匹更快的馬」,而不是現在已經普及的汽車。所以,在大數據的世界裡,創意、直覺、冒險精神和知識野心尤為重要。
 
7.產品質量管理與分析
 
傳統的製造業正面臨著大數據的沖擊,在產品研發、工藝設計、質量管理、生產運營等各方面都迫切期待著有創新方法的誕生,來應對工業背景下的大數據挑戰。例如在半導體行業,晶元在生產過程中會經歷許多次摻雜、增層、光刻和熱處理等復雜的工藝製程,每一步都必須達到極其苛刻的物理特性要求,高度自動化的設備在加工產品的同時,也同步生成了龐大的檢測結果。

⑸ 《工業大數據工業4.0時代的工業轉型與價值創造》pdf下載在線閱讀全文,求百度網盤雲資源

《工業大數據工業4.0時代的工業轉型與價值創造》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1CHYfMkMPGbQdHpcr6uKuVw

?pwd=hbak 提取碼:hbak
簡介:工業大數據是未來工業在全球市場競爭中發揮優勢的關鍵。無論是德國工業4.0、美國工業互聯網還是《中國製造2025》,各國製造業創新戰略的實施基礎都是工業大數據的搜集和特徵分析,及以此為未來製造系統搭建的無憂環境。本書基於工業4.0的時代背景,通過深入剖析未來工業的商業模式和智能服務體系的創新技術變革,論述如何通過工業大數據的分析和應用去預測需求、預測製造,整合產業鏈和價值鏈,發現用戶的價值缺口,發現和管理不可見的問題,實現為用戶提供定製化的產品和服務。

⑹ 如何使用大數據技術為企業創造更大的價值

大家好,我是Lake,專注大數據技術、互聯網科技見解、程序員經驗分享

作為一名大數據工程師,我來說下我的想法。如何使用大數據技術為企業創造更大的價值?這里有兩個注重點,一個是大數據技術,一個是為企業創造價值。目前大數據在不同的應用場景,可以分為很多不同種類的技術,比如數據的離線計算有 Hadoop、Spark,存儲方面有HBASE、HDFS、MongoDB、JanusGraph,消息中間件有 Kafka、MetaQ,實時計算有Storm、Flink、Spark Streaming等等。這么多大數據技術,怎麼樣為企業創造出更大的價值呢,我認為有一下幾點:

保證線上業務穩定性


目前很多企業最底層都用到大數據相關技術,如何保證線上業務穩定成為大數據技術最重要的一件事情。線上業務不穩定會直接影響到消費者的使用,尤其是涉及到交易相關的業務更是重中之重。線上業務的穩定性不能受到大數據集群抖動而產生影響,打個比方,線上訂單交易鏈路在最底層使用到了HBase 資料庫,但HBase集群突然 Down掉之後,那麼線上用戶突然不能夠進行下單和支付了,這對於公司來說,直接就影響到公司的交易額和利潤,這種情況是公司絕對無法容忍的。

所以你能夠保證公司所使用大數據技術集群資源越穩定,那麼對於線上業務的穩定運行就越有保證,通過對大數據集群穩定性進行保障,進一步提升消費者的使用體感,這就是你的價值。

更好的降低大數據集群機器資源消耗


更好的降低公司大數據集群機器的資源消耗,提升公司集群資源的使用率,進一步壓榨機器的性能也為公司帶來了價值。公司每台機器,說實話,都需要從外進行采購,這消耗的就是公司的資金。如果你能在現有的機器上,滿足更多的業務,而不只是單純的購買機器水平擴展來滿足業務,這樣會進一步幫助公司節約資金。公司的最終目的也是為了盈利,你幫公司降低了機器的購買,這也是為公司節約了一筆很大的成本。

大數據技術創新


大數據技術發展到了一定程度,就需要自己通過技術創新,來滿足公司一些更為復雜的業務場景。通過技術創新,帶動業務發展。比如圖資料庫的出現,使得公司能夠使用圖資料庫來構建用戶的社交網路圖,通過構建的社交網路圖可以快速了解到用戶的關注、用戶的粉絲、和用戶興趣相同的用戶有哪些。哪些用戶是信息傳播關鍵點等等,通過大數據技術的創新,知道更多潛藏在大數據底層的商業信息價值,從而幫助公司上層更好的做戰略規劃。同時,也可以通過技術創新,變革整個公司的技術架構,使用新的技術來滿足未來公司戰略的發展,最直接的例子,就是阿里雲。

總結

總體來說,大數據如何為公司創造更大的價值,我認為可以從提升大數據集群的穩定性入手,更好的保證公司線上業務的穩定和運行。其次,可以更好的壓榨和節約公司的大數據集群相關的機器資源,從而減少公司機器方面的采購成本。最後,就是通過大數據技術創新,通過技術來驅動業務的發展,當然這也是最難的一點,如果你能做到通過某種大數據技術的創新使得公司戰略方面業務的成功,那麼你的價值對於公司來說,將是無法估量的。

如果你覺得我的問答有幫助的話,歡迎你點贊轉發或者關注我,更多干貨內容,歡迎關注LakeShen說,你的小小的鼓勵,就是我持續分享的動力。

⑺ 大數據可以通過以下哪些方式為企業創造價值

當人們的工作和生活被「大數據」概念不斷充斥的時候,企業則不能在這個概念問題上有誤會,要分清楚大數據的含義。大數據並不等同於數據分析。大數據具有更為告訴、大規模、多樣性的特點,企業能夠利用大數據對各種經營管理過程中所產生的數據進行有效迅速的收集、處理和分析,對有價值的數據進行提取,從而能夠獲得對於企業的發展和經營更有助力和針對性的方案。
在傳統的企業管理過程中,管理通常都是由領導說了算,而隨著大數據的發展,現代企業在經營管理過程中,側重的更多是大數據所分析出來的結果。這樣的模式,對於傳統領導力是一種挑戰,同時,也是企業能夠在互聯網路時代中得以繼續發展和興旺的基礎。
對於企業來說,大數據的質量問題也是具有非常重要的價值。大數據的採集、整理和分析處理的基礎,就是要保證大數據所得出的結論能夠給企業帶來足夠的幫助,而不是提供一些毫無意義的建議。如果不能把控大數據的質量問題,企業內部則無法通過數據信息來獲得實質性的決策幫助。
歸根結底,大數據對於企業的經營管理中所存在的重要價值就是對於決策的輔助作用。通過大數據的有效分析,能夠總結企業經營管理經驗,對發展趨勢做出預測。

⑻ 大數據如何給企業創造實際價值

第一,通過大數據分析,各行各業都能更快地對變革進行跟蹤,響應全球經濟快速的變化。
第二,在全球金融經濟危機的狀態下,通過數據分析,能夠更好地理解整個經濟危機行為的演變。
第三,能夠更好地滿足大眾和企業服務的需求,而且可以預測市場的變化。
而從大數據利用的方式上,也可產生幾個方面的價值。
首先,大數據的價值密度較低,現在可利用和分析的數據只是冰山一角,數據里的價值遠沒有被發掘出來,所以要利用分析技術去發現它們的潛在價值。
其次,要實現大數據整合創新的價值,通過不同渠道的聚集整合,創造新的數據價值。

⑼ 大數據技術對現代企業的價值體現在哪些方面

大數據的價值體現在以三方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

2、做小而美模式的中小微企業可以利用大數據做服務轉型;

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

大數據技術主要包括以下作用:

第一,對大數據的處理分析正成為新一代信息技術融合應用的結點。

移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。

第二,大數據是信息產業持續高速增長的新引擎。

面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。

第三,大數據利用將成為提高核心競爭力的關鍵因素。

⑽ 工業大數據大有可為,淺談製造業7大應用場景

工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文我們講就工業大數據在製造企業的應用場景進行逐一梳理。

一、加速產品創新

客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。福特公司是這方面的表率,他們將大數據技術應用到了福特福克斯電動車的產品創新和優化中,這款車成為了一款名副其實的「大數據電動車」。第一代福特福克斯電動車在駕駛和停車時產生大量數據。在行駛中,司機持續地更新車輛的加速度、剎車、電池充電和位置信息。這對於司機很有用,但數據也傳回福特工程師那裡,以了解客戶的駕駛習慣,包括如何、何時以及何處充電。即使車輛處於靜止狀態,它也會持續將車輛胎壓和電池系統的數據傳送給最近的智能電話。

這種以客戶為中心的大數據應用場景具有多方面的好處,因為大數據實現了寶貴的新型產品創新和協作方式。司機獲得有用的最新信息,而位於底特律的工程師匯總關於駕駛行為的信息,以了解客戶,制訂產品改進計劃,並實施新產品創新。而且,電力公司和其他第三方供應商也可以分析數百萬英里的駕駛數據,以決定在何處建立新的充電站,以及如何防止脆弱的電網超負荷運轉。

二、設備故障分析及預測

在製造業生產線上,工業生產設備都會受到持續的振動和沖擊,這導致設備材料和零件的磨損老化,從而導致工業設備容易產生故障,而當人們意識到故障時,可能已經產生了很多不良品,甚至整個工業設備已經奔潰停機,從而造成巨大的損失。

如果能在故障發生之前進行故障預測,提前維修更換即將出現問題的零部件,這樣就可以提高工業設備的壽命以及避免某個設備突然出現故障對整個工業生產帶來嚴重的影響。隨著工業4.0的到來,智能工廠的工業設備都配上了各種感應器,採集其振動、溫度、電流、電壓等數據顯得輕而易舉,通過分析這些實時的感測數據,對工業設備進行故障預測將是一種行之有效的措施。

因此設備故障預測方案成為了製造行業所青睞的解決方案,其具備的核心功能有:

1、故障超前預警,減少設備停機時間;

2、分析結果實時推送,減少人工成本;

3、適用於企業各種類型的設備,通用性強。

三、工業物聯網生產線的大數據應用

現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。

首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。一旦有某個流程偏離了標准工藝,就會產生一個報警信號,能更快速地發現錯誤或者瓶頸所在,也就能更容易解決問題。利用大數據技術,還可以對工業產品的生產過程建立虛擬模型,模擬並優化生產流程,當所有流程和績效數據都能在系統中重建時,這種透明度將有助於製造商改進其生產流程。再如,在能耗分析方面,在設備生產過程中利用感測器集中監控所有的生產流程,能夠發現能耗的異常或峰值情形,由此便可在生產過程中優化能源的消耗,對所有流程進行分析將會大大降低能耗。

四、產品銷售預測與需求管理

近年來,保險業加速了數字化進程,大數據與保險營銷深度融合,成為現代化保險營銷的重要武器。慧都大數據助力保險行業精準營銷,並成功幫助中意人壽保險有限公司更好地服務客戶和發揮忠誠客戶,提高銷售效率及客戶復購率。

五、工業供應鏈的分析與優化

當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。

六、生產計劃與排程

製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的 歷史 數據,對於需要快速響應的APS來說,是一個巨大的挑戰。大數據可以給予我們更詳細的數據信息,發現 歷史 預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。

七、生產質量分析與預測

在工業生產中,設備失效、人員疏忽、參數異常、原材料差異、環境波動等因素而導致質量偏離,引起質量等級的缺陷和損失非常巨大。工藝流程復雜的大型製造業,如鋼鐵、 汽車 、電子、服裝等行業,信息數據孤島凸顯,導致質量問題頻發,尤其需要「及時發現和預測異常,迅速控制和分析質量異常的原因,進行生產過程改進,穩定生產過程,減少產品質量波動」。

生產質量分析,從工廠訂單下單-訂單生產-流入市場, 針對整個生產鏈進行全面的質量分析。其中,打通質量和人、機、料、法、環等數據,各生產數據環環相扣,聚焦質量管理的全量數據分析,幫助企業快速 探索 缺陷根本原因。

1、打通質量和人、機、料、法、環,對影響質量的全量數據進行交互分析, 探索 相互關系,挖掘數據背後的真實原因,獲取結果「是什麼」,回答「為什麼」。

2、將傳統的靜態匯報模式,改為互動式動態會議,隨時隨地可以組織生產、質量相關專題會議。通過對維度展示生產和質量KPI,實時預警、掌握產線運營狀況。

3、簡單易上手的質量分析工具,員工只需對數據進行選取、拖曳,自助靈活地達成期望的數據結果。

4、摒棄以往靜態的數據報表,整合多個業務系統數據,多場景數據大屏,自適應多屏,進行綜合展示分析,讓決策更清晰。

————————————————

閱讀全文

與如何用工業大數據創造價值相關的資料

熱點內容
賓士gl6裸車多少 瀏覽:161
工業用地租用合同可以簽多少年 瀏覽:990
晉州限什麼號汽車 瀏覽:655
工業水冷主機多少錢 瀏覽:585
汽車怎麼改裝聲音好聽 瀏覽:856
寶馬機油ll04代表什麼意思 瀏覽:580
江西井岡山有哪些重工業 瀏覽:407
寶馬水性漆是什麼牌子 瀏覽:200
賓士glk300變速箱油更換多少錢 瀏覽:930
廢舊工業氧氣瓶多少錢一個 瀏覽:901
奧迪a4和bba哪個好 瀏覽:38
黃坑工業區在哪裡 瀏覽:53
工業華工激光切管機多少錢 瀏覽:739
羊水在寶馬體內是怎麼循環的 瀏覽:261
奧迪q5l可以開多少公里報廢 瀏覽:66
奧迪寶馬哪個規模大 瀏覽:196
賓士大燈修理大概多少錢 瀏覽:191
泡沫混凝土在工業有哪些應用 瀏覽:779
eve工業號如何選擇 瀏覽:877
汽車美容店加盟要多少錢 瀏覽:916